Part Number Hot Search : 
AN113 UT257 05129 LT1078I SI9430 24C16 AD674BJN T40C6J
Product Description
Full Text Search
 

To Download TK11900 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 TK11900
ADJUSTABLE LOW DROPOUT REGULATOR FEATURES
s s s s s s Low Supply Current Low Power Shutdown Mode Low Noise Output Low Dropout Voltage Extremely High Stability High Speed On/Off Transient (50 s typ.) s Miniature Package (SOT-23L)
APPLICATIONS
s s s s s s Portable Instrumentation Cordless Telephones Pagers Toys Cellular Telephones Test Equipment
DESCRIPTION
The TK11900 is a low dropout voltage regulator with external voltage adjustment. The output can be set between 1.5 V and 15 V by an external pair of resistors in a divider configuration. The device has a bypass pin for an external capacitor to reduce output noise to a typical 50 V(rms). In addition, a control pin is provided that is active low (a low level turns on the output). In the "off" mode (control pin high) the device draws only 65 A of quiescent current. The TK11900 is available in a miniature SOT-23L surface mount package. TK11900
NOISE BYPASS
01 S
VIN GND
CONTROL
FEEDBACK
VOUT
ORDERING INFORMATION
TK11900M
Tape/Reel Code
VIN
BLOCK DIAGRAM
VOUT
CONTROL
SHUT DOWN
THERMAL PROTECTION
TAPE/REEL CODE
TL: Tape Left
BANDGAP REFERENCE FEEDBACK
NOISE BYPASS
GND
November 2000 TOKO, Inc.
Page 1
TK11900
ABSOLUTE MAXIMUM RATINGS
Supply Voltage ......................................................... 17 V Operating Voltage Range ............................... 1.8 to 16 V Power Dissipation (Note 1) ................................. 400 mW Storage Temperature Range ..................... -55 to +150 C Operating Temperature Range ..................... -30 to +80 C Junction Temperature .......................................... 150 C Lead Soldering Temperature (10 s) ....................... 235 C
TK11900M ELECTRICAL CHARACTERISTICS
Test conditions: VIN = VOUT(TYP) + 1 V, TA = 25 C, unless otherwise specified.
SYMBOL IQ ISTBY VOUT VDROP IOUT Line Reg Load Reg VOUT /T RR VNO Vref
PARAMETER Quiescent Current Standby Current Output Voltage Dropout Voltage Output Current Line Regulation Load Regulation Temperature Coefficient Ripple Rejection Output Noise Voltage
TEST CONDITIONS VIN = VOUT(TYP) + 1 V, IOUT = 0 mA VIN = VOUT(TYP) - 1 V, IOUT = 0 mA Output OFF (Note 2) IOUT = 30 mA VOUT(TYP) + 1 V VIN VOUT(TYP) + 10 V 1 mA IOUT 80 mA VIN = VOUT(TYP) - 1 V CL = 10 F, f = 400 Hz 10 Hz f 100 kHz, CL = 10 F, CN = 0.01 F TA = 25 C TA = -30 to 80 C
MIN
TYP 140 380 65
MAX 300 900 140 15
UNITS A A A V mV mA mV mV mV/C dB Vrms
1.5 160
350 100
5 20 0.15 68 50 1.225 1.210 1.250 1.250
50 100
1.275 1.290
V V
Reference Voltage
CONTROL TERMINAL SPECIFICATIONS ICONT VCONT(ON) VCONT(OFF) TR Control Terminal Current Control Voltage (ON) Control Voltage (OFF) Output Rise Time (OFF to ON) VCONT = 5 V VCONT = 16 V Output ON Output OFF IOUT = 30 mA, CL = 0.1 F, CN = 0.1 F 2.2 50 25 45 100 150 0.6 A A V V s
Note 1: Power dissipation is 400 mW when mounted as recommended. Derate at 3.2 mW/C for operation above 25C. Note 2: The output voltage can be set from 1.5 to 15 V by two external resistors. "Refer to Definition of Terms."
Page 2
November 2000 TOKO, Inc.
TK11900
TEST CIRCUIT
IIN VOUT VIN + 1 F + CL 10 F IOUT
R1
NOISE BYPASS
Note: CL is a tantalum capacitor
CONT ICONT CN 0.01 F FEEDBACK
Note: VOUT = 1.25 [(R1 + R2) / R2] 10 k - R2 - 60 k Connect Pin 5 to ground
VCONT
R2
TYPICAL PERFORMANCE CHARACTERISTICS
VOUT = 5 V, TA = 25 C, unless otherwise specified.
OUTPUT VOLTAGE VS. OUTPUT CURRENT 5.1 5.1 5.0 OUTPUT VOLTAGE VS. INPUT VOLTAGE
500 QUIESCENT CURRENT VS. INPUT VOLTAGE
VOUT (V)
VOUT (V)
IQ (mA)
4.9 4.8 4.7
5.0
250
4.9 0 50 IOUT (mA) OUTPUT VOLTAGE CHARACTERISTICS VS. INPUT VOLTAGE 5.5 100
4.6 0 10 VIN (V) REFERENCE VOLTAGE (FEEDBACK PIN) VS. TEMPERATURE 20
0 0 10 VIN (V) 20
GROUND CURRENT VS. OUTPUT CURRENT 10
1.28 1.27 1.26 1.25 30 mA 60 mA 4.5 4.5 5.0 VIN (V) 5.5 1.24 1.23 -50 0 0 TA (C) 50 100 0 50 IOUT (mA) 100
IGND (mA)
VOUT (V)
Vref (V)
IOUT = 0 mA 5.0
5
November 2000 TOKO, Inc.
Page 3
TK11900
TYPICAL PERFORMANCE CHARACTERISTICS (CONT.)
VOUT = 5 V, TA = 25 C, unless otherwise specified.
DROPOUT VOLTAGE VS. OUTPUT CURRENT 500 400
VDROP (mV)
NOISE (V)
NOISE VS. BYPASS CAPACITOR VALUE 300 200 150 100 50 0 1 pF 0 10 pF 100 pF1000 pF 0.01 F0.1 F CN
RIPPLE REJECTION VS. FREQUENCY 0 IIN (A)
INPUT CURRENT AND CONTROL CURRENT VS. CONTROL VOLTAGE 200 100
IIN
ICONT (A)
300 200 100 0 0 50 IOUT (mA) OUTPUT VOLTAGE VS. OUTPUT CURRENT 5 4 100
100
SHUTDOWN POINT
50
ICONT 0 0 2.5 VCONT (V) 5.0
VIN
VOUT 11900 SW CL 10 F 0.1 F CN 0.01 F
VOUT (V)
3 2
RR (dB)
CL = 0.1 F -50 CL = 10 F
1 0 0 100 IOUT (mA) 200
-100 10
RIPPLE REJECTION CIRCUIT
100
1k f (Hz)
10 k
100 k
NOISE VS. SPECTRUM -50
LINE VOLTAGE STEP RESPONSE 7V
LOAD CURRENT STEP RESPONSE
VIN
VOUT (20 mV / DIV)
NOISE (dB)
IOUT = 25 mA CL = 0.1 F CN = 0.1 F -100
VOUT (100 mV / DIV)
IOUT
50 mA
6V
0 mA
VOUT
SPECTRUM ANALYZER BACKGROUND NOISE
CL = 3.3 F CN = 0.1 F -150 0 500 k f (Hz) 1M TIME (50 s/DIV) TIME (50 s/DIV)
Page 4
VOUT
November 2000 TOKO, Inc.
TK11900
TYPICAL PERFORMANCE CHARACTERISTICS (CONT.)
VOUT = 5 V, TA = 25 C, unless otherwise specified.
TURN-ON TIME VS. OUTPUT CAPACITOR
GROUND CURRENT (ON MODE) VS. TEMPERATURE 10 100
STANDBY CURRENT (OFF MODE) VS. TEMPERATURE
VCONT
2.4 V 1 F
VOUT (1 V / DIV)
CL = .1 F 10 F
IGND (mA)
ISTBY (A)
0V
5
IOUT = 60 mA IOUT = 30 mA
50
VOUT
15 F 4.7 F
0 -50
TIME (50 s/DIV)
0 TA (C)
50
100
0 -50
0 TA (C)
50
100
CONTROL CURRENT VS. TEMPERATURE 50 40
CONTROL VOLTAGE (OFF POINT) VS. TEMPERATURE 2.0 500 400 300 200 100 0 -50 0 -50
DROPOUT VOLTAGE VS. TEMPERATURE
VDROP (mV)
ICONT (A)
VCONT (V)
30 20 10 0 -50
VCONT = 5 V
IOUT = 60 mA
1.0
VCONT = 2.5 V
IOUT = 30 mA
0 TA (C)
50
100
0 TA (C)
50
100
0 TA (C)
50
100
November 2000 TOKO, Inc.
Page 5
TK11900
DEFINITION AND EXPLANATION OF TECHNICAL TERMS
QUIESCENT CURRENT (IQ) The quiescent current is the current which flows through the ground terminal under no load (IOUT = 0 mA). GROUND CURRENT (IGND) Ground current is the current which flows through the current pin(s). It is defined as IIN - IOUT, excluding control current. Line Regulation (Line Reg) Line regulation is the relationship between change in output voltage due to a change in input voltage. Load Regulation (Load Reg) Load regulation is the relationship between change in output voltage due to a change in load current. DROP OUT VOLTAGE (VDROP) This is a measure of how well the regulator performs as the input voltage decreases. The smaller the number, the further the input voltage can decrease before regulation problems occur. Nominal output voltage is first measured when VIN = VOUT(TYP) + 1 at a chosen load current. When the output voltage has dropped 100 mV from the nominal, VIN - VOUT is the dropout voltage. This voltage is affected by load current and junction temperature. OUTPUT NOISE VOLTAGE This is the effective AC voltage that occurs on the output voltage under the condition where the input noise is low and with a given load, filter capacitor, and frequency range. THERMAL PROTECTION This is an internal feature which turns the regulator off when the junction temperature rises above 150 C. After the regulator turns off, the temperature drops and the regulator output turns back on. Under certain conditions, the output waveform may appear to be an oscillation as the output turns off and on and back again in succession. Tj = 0jA x PD + TA For Toko ICs, the internal limit for junction temperature is 150 C. If the ambient temperature (TA) is 25 C, then: 150 C = 0jA x PD + 25 C 0jA = 125 C / PD PD is the value when the thermal sensor is activated. A simple way to determine PD is to calculate VIN x IIN when the output side is shorted. Input current gradually falls as temperature rises. You should use the value when thermal equilibrium is reached. PACKAGE POWER DISSIPATION (PD) This is the power dissipation level at which the thermal sensor is activated. The IC contains an internal thermal sensor which monitors the junction temperature. When the junction temperature exceeds the monitor threshold of 150 C, the IC is shut down. The junction temperature rises as the difference between the input power (VIN x IIN) and the output power (VOUT x IOUT) increases. The rate of temperature rise is greatly affected by the mounting pad configuration on the PCB, the board material, and the ambient temperature. When the IC mounting has good thermal conductivity, the junction temperature will be low even if the power dissipation is great. When mounted on the recommended mounting pad, the power dissipation of the SOT23L is increased to 400 mW. For operation at ambient temperatures over 25 C, the power dissipation of the SOT23L device should be derated at 3.2 mW/C. To determine the power dissipation for shutdown when mounted, attach the device on the actual PCB and deliberately increase the output current (or raise the input voltage) until the thermal protection circuit is activated. Calculate the power dissipation of the device by subtracting the output power from the input power. These measurements should allow for the ambient temperature of the PCB. The value obtained from PD /(150 C - TA) is the derating factor. The PCB mounting pad should provide maximum thermal conductivity in order to maintain low device temperatures. As a general rule, the lower the temperature, the better the reliability of the device. The thermal resistance when mounted is expressed as follows:
Page 6
November 2000 TOKO, Inc.
TK11900
DEFINITION AND EXPLANATION OF TECHNICAL TERMS (CONT.)
The range of usable currents can also be found from the graph below.
(mW) PD 3
DPD
6 4 5
25
50
75 TA (C)
150
Procedure: 1) 2) 3) 4) 5) Find PD PD1 is taken to be PD x (~ 0.8 - 0.9) Plot PD1 against 25 C Connect PD1 to the point corresponding to the 150 C with a straight line. In design, take a vertical line from the maximum operating temperature (e.g., 75 C) to the derating curve. Read off the value of PD against the point at which the vertical line intersects the derating curve. This is taken as the maximum power dissipation, DPD.
6)
The maximum operating current is: IOUT = (DPD / (VIN(MAX) - VOUT)
500 400
PD (mW)
MOUNTED
300 200 100 0 0 50 TA (C)
FREE AIR
100
150
SOT-23L POWER DISSIPATION November 2000 TOKO, Inc. Page 7
TK11900
APPLICATION INFORMATION
BOARD LAYOUT Copper pattern should be as large as possible. Power dissipation is 400 mW for the SOT-23L package. A low Equivalent Series Resistance (ESR) capacitor is recommended. For low temperature operation, select a capacitor with a low ESR at the lowest operating temperature to prevent oscillation, degradation of ripple rejection and increase in noise. The minimum recommended capacitance is 2.2 F. to consider the characteristics of the capacitor over temperature when selecting decoupling capacitors. The ESR is another important parameter. The ESR will increase with temperature but low ESR capacitors are often larger and more costly. In general, tantalum capacitors offer lower ESR than aluminum electrolytic, but new low ESR aluminum electrolytic capacitors are now available from several manufacturers. Usually a bench test is sufficient to determine the minimum capacitance required for a particular application. After taking thermal characteristics and tolerance into account, the minimum capacitance value should capacitor or 3.3 F for an aluminum electrolytic. Please note that linear regulators with a low dropout voltage have high internal loop gains which require care in guarding against oscillation caused by insufficient decoupling capacitance. The use of high quality decoupling capacitors suited for your application will guarantee proper operation of the circuit. NOISE BYPASS CAPACITOR SECTION
FEEDBACK CONTROL
VIN
GND
VOUT
+
+
NOISE BYPASS
GND
SOT-23L BOARD LAYOUT
The noise bypass capacitor (CN) should be connected as close as possible to pin 1 and ground. The recommended value for CN is 0.01 mF. The noise bypass terminal has a high impedance and care should be taken if the noise bypass capacitor is not used. This terminal is susceptible to external noise, and oscillation can occur when CN is not used and the solder pad for this pin is too large. OUTPUT VOLTAGE SETTING The output voltage can be set from 1.5 to 15 V by two external resistors according to the following equation: VOUT = 1.25 V x [(R1 + R2) / R2]
VOUT
INPUT/OUTPUT DECOUPLING CAPACITOR CONSIDERATIONS Voltage regulators require input and output decoupling capacitors. The required values of these capacitors vary with application. Capacitors made by different manufacturers can have different characteristics, particularly with regard to high frequencies and ESR over temperature. The type of capacitor is also important. For example, a 4.7 F aluminum electrolytic may be required for a certain application. If a tantalum capacitor is used, a lower value of 2.2 F would be adequate. It is important to consider the temperature characteristics of the decoupling capacitors. While Toko regulators are designed to operate as low as -30 C, many capacitors will not operate properly at this temperature. The capacitance of aluminum electrolytic capacitors may decrease to 0 at low temperatures. This may cause oscillation on the output of the regulator since some capacitance is required to guarantee stability. Thus, it is important
R1
FEEDBACK R2
where 10 k - R2 - 60 k Page 8 November 2000 TOKO, Inc.
TK11900
APPLICATION INFORMATION (CONT.)
CURRENT BOOST
VIN + 1 F RE CL 10 F
VOUT
R1
Note: VOUT = 1.25 [(R1 + R2) / R2] 10 k - R2 - 60 k
NOISE BYPASS CONT CN 0.1 F CONTROL R2 FEEDBACK
The output current can be increased by connecting an external NPN transistor as shown above. The output current capability depends on the Hfe of the external transistor. Note: The TK11900 internal short circuit protection and the thermal sensor do not protect the external transistor.
November 2000 TOKO, Inc.
Page 9
TK11900
PACKAGE OUTLINE
Marking Information Marking
TK11900
0.6 6 5 4 Marking
SOT-23L (SOT-23L-6)
G0
1.0
1 e
2 e 0.95
3 0.32 0.95
+0.15 - 0.05
0.1
M
e 0.95
e 0.95
Recommended Mount Pad
3.5
+0.3 - 0.1
2.2 0.3
(3.4)
1.4 max
e1 3.0 1.2
+0.15 - 0.05
15 0 - 0.1 0.4
+ 0.3
0.1
0.15
3.3
Dimensions are shown in millimeters Tolerance: x.x = 0.2 mm (unless otherwise specified)
Toko America, Inc. Headquarters 1250 Feehanville Drive, Mount Prospect, Illinois 60056 Tel: (847) 297-0070 Fax: (847) 699-7864
TOKO AMERICA REGIONAL OFFICES
Midwest Regional Office Toko America, Inc. 1250 Feehanville Drive Mount Prospect, IL 60056 Tel: (847) 297-0070 Fax: (847) 699-7864 Western Regional Office Toko America, Inc. 2480 North First Street , Suite 260 San Jose, CA 95131 Tel: (408) 432-8281 Fax: (408) 943-9790 Semiconductor Technical Support Toko Design Center 4755 Forge Road Colorado Springs, CO 80907 Tel: (719) 528-2200 Fax: (719) 528-2375
Visit our Internet site at http://www.tokoam.com
The information furnished by TOKO, Inc. is believed to be accurate and reliable. However, TOKO reserves the right to make changes or improvements in the design, specification or manufacture of its products without further notice. TOKO does not assume any liability arising from the application or use of any product or circuit described herein, nor for any infringements of patents or other rights of third parties which may result from the use of its products. No license is granted by implication or otherwise under any patent or patent rights of TOKO, Inc.
Page 10
(c) 1999 Toko, Inc. All Rights Reserved IC-118-TK11900 0798O0.0K
max
November 2000 TOKO, Inc.
Printed in the USA


▲Up To Search▲   

 
Price & Availability of TK11900

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X